OpenCensus is being archived! Read the blog post to learn more

PyMemcache

Introduction

Memcached is one of the most used server caching and scaling technologies.

It was created by Brad Fitzpatrick in 2003 as a solution to scale his social media product Live Journal

Pinterest’s Python PyMemcache client has been wrapped and instrumented with OpenCensus for tracing and metrics

Features

Using it

Pip install it

The package is available on pip at https://pypi.org/project/ocpymemcache/ and is installable by

pip install ocpymemcache

In code

And then like you normally would create a pymemcache client, just replace the import

from pymemcache.client.base import Client

with

from ocpymemcache.client import OCPyMemcacheClient

and then finally replace Client with OCPyMemcacheClient to give

client = OCPyMemcacheClient(('localhost', 11211,))

instead of

client = Client(('localhost', 11211,))

The same applies for hashclient, please replace

from pymemcache.client.hash import HashClient

with

from ocpymemcache.client import OCPyMemcacheHashClient

and finally

client = HashClient([
    ('127.0.0.1', 11211),
    ('127.0.0.1', 11212),
])

with

client = OCPyMemcacheHashClient([
    ('127.0.0.1', 11211),
    ('127.0.0.1', 11212),
])

Use it normally like you would have used the original package!

For a guided example, please continue reading below.

Problem statement

Our sample is an application excerpt from a distributed prime factorization engine that needs to calculate fibonacci numbers but would like to reuse expensively calculated results since fibonacci numbers since the computations of such numbers are CPU intensive.

To share/memoize results amongst our distributed applications, we’ll use Memcache. However, to examine our changes in a distributed systems deployment with numerous microservices, it is useful to have tracing and metrics to verify our optimizations and inspect the state of the system.

This is what the code original looks like

For assistance installing Memcached, please visit the Memcached Installation wiki

Please run your Memcached server, for this example we’ll run it locally on port 11211.

#!/usr/bin/env python

import time
from ocpymemcache.client import OCPyMemcacheClient

def num_as_str(num): return '%d' % num

def main():
    # Create the Memcache client
    mc = OCPyMemcacheClient(("localhost", 11211,))
    do_work(mc)

    time.sleep(5)

def do_work(mc):
    values = [
        30, 33,
    ]

    for value in values:
        for i in range(0, 2):
            nf = nth_fibonacci(mc, value)
            print("Fibonacci %d ==> %d"%(value, nf))

        # Afterwards, clean up to ensure repeatability of the test
        mc.delete(num_as_str(value))

def fib(n):
    if n <= 0:
        return 1

    return fib(n-2) + fib(n-1)

def nth_fibonacci(mc, n):
    # Firstly check if we've cached it
    num_str = num_as_str(n)

    res = mc.get(num_str)
    if res is not None:
        try:  # Try parsing it as a float
            return int(res)
        except ValueError as e:
            # Failed to parse it
            _ = 0

    # Otherwise this was a cache miss, so go on
    value = fib(n)

    as_str = num_as_str(value)

    # Now cache it for a cache hit later on
    mc.set(num_str, as_str)
    return value

if __name__ == '__main__':
    main()

Enabling OpenCensus

Installation

pip install opencensus
pip install google-cloud-trace
pip install google-cloud-monitoring

To provide observability, we’ll enable tracing by importing OpenCensus Python’s tracing package

from opencensus.trace.tracer import Tracer

# For demo purposes, we'll always sample
from opencensus.trace.samplers import always_on

tracer = Tracer(sampler=always_on.AlwaysSampler())

Enabling tracing

Enabling any of the Python OpenCensus trace exporters

For this example, we’ll use Stackdriver Tracing and then create a Tracer.

With Memcached now installed and running, we’ll use Stackdriver Tracing

For assistance setting up Stackdriver, please visit this Stackdriver setup guided codelab

import os

from opencensus.common.transports.async_ import AsyncTransport
from opencensus.trace.exporters import stackdriver_exporter

def main():
    gcp_project_id = os.environ.get('PROJECT_ID', 'census-demos')

    # Enable tracing
    texp = stackdriver_trace.StackdriverExporter(
            project_id=gcp_project_id,
            transport=AsyncTransport)
    tracer = Tracer(sampler=always_on.AlwaysOnSampler(), exporter=texp)

Enabling metrics

Enabling any of the Python OpenCensus stats exporters

For this example, we’ll use Stackdriver Monitoring.

For assistance setting up Stackdriver, please visit this Stackdriver setup guided codelab

import os

from ocpymemcache.observability import enable_metrics_views

from opencensus.stats import stats as stats_module
from opencensus.stats.exporters import stackdriver_exporter as stackdriver_stats

def main():
    gcp_project_id = os.environ.get('PROJECT_ID', 'census-demos')

    # Enable metrics
    mexp = stackdriver_stats.new_stats_exporter(
            stackdriver_stats.Options(project_id=gcp_project_id))
    stats = stats_module.Stats()
    view_manager = stats.view_manager
    view_manager.register_exporter(mexp)
    enable_metrics_views()

End to end example

#!/usr/bin/env python

import os
import time

from ocpymemcache.client import OCPyMemcacheClient
from ocpymemcache.observability import enable_metrics_views

# Observability from OpenCensus
from opencensus.common.transports.async_ import AsyncTransport
from opencensus.stats import stats as stats_module
from opencensus.stats.exporters import stackdriver_exporter as stackdriver_stats
from opencensus.trace import execution_context
from opencensus.trace.exporters import stackdriver_exporter as stackdriver_trace
from opencensus.trace.samplers import always_on
from opencensus.trace.status import Status
from opencensus.trace.tracer import Tracer

def num_as_str(num): return '%d' % num

def main():
    gcp_project_id = os.environ.get('PROJECT_ID', 'census-demos')

    # Enable tracing
    texp = stackdriver_trace.StackdriverExporter(
            project_id=gcp_project_id,
            transport=AsyncTransport)
    tracer = Tracer(sampler=always_on.AlwaysOnSampler(), exporter=texp)

    # Enable metrics
    mexp = stackdriver_stats.new_stats_exporter(
            stackdriver_stats.Options(project_id=gcp_project_id))
    stats = stats_module.Stats()
    view_manager = stats.view_manager
    view_manager.register_exporter(mexp)
    enable_metrics_views()

    # Create the Memcache client
    mc = OCPyMemcacheClient(("localhost", 11211,))

    with tracer.span(name='MemcachePythonUsage') as span:
        do_work(mc)

    time.sleep(5)

def do_work(mc):
    values = [
        30, 33,
    ]

    tracer = execution_context.get_opencensus_tracer()
    for value in values:
        with tracer.span(name='CalculateFibonacci-%d' % value) as cspan:
            for i in range(0, 2):
                with tracer.span(name='Round-%d' % (i+1)) as span:
                    nf = nth_fibonacci(tracer, mc, value)
                    print("Fibonacci %d ==> %d" % (value, nf))

            # Afterwards, clean up to ensure repeatability of the test
            mc.delete(num_as_str(value))
            cspan.finish()

def fib(n):
    if n <= 0:
        return 1
    return fib(n-2) + fib(n-1)

def nth_fibonacci(tracer, mc, n):
    with tracer.span('nthFibonacci') as span:
        return do_nth_fibonacci(tracer, span, mc, n)

def do_nth_fibonacci(tracer, parent_span, mc, n):
    # Firstly check if we've cached it
    with tracer.span('serialize-num'):
        num_str = num_as_str(n)

    res = mc.get(num_str)
    if res is not None:
        with tracer.span('try-deserialize') as span:
            try: # Try parsing it as a float
                span.add_annotation('Cache hit', key=num_str, value=res)
                return int(res)
            except ValueError as e:
                # Failed to parse it
                span.status = Status.from_exception(e)

    parent_span.add_annotation('Cache miss', key=num_str)
    with tracer.span('Fib'):
        # Otherwise this was a cache miss, so go on
        value = fib(n)
        # time.sleep(0.7) # Artificial delay

    with tracer.span('serialize-num'):
        as_str = num_as_str(value)

    # Now cache it for a cache hit later on
    mc.set(num_str, as_str)
    return value

if __name__ == '__main__':
    main()

We’ll then run the code by python main.py which will produce output such as

Background thread started.
Fibonacci 30 ==> 2178309
Fibonacci 30 ==> 2178309
Fibonacci 33 ==> 9227465
Fibonacci 33 ==> 9227465
Sending all pending spans before terminated.
Background thread exited.
Sent all pending spans.

Examining your traces

Please visit https://console.cloud.google.com/traces

Opening our console will produce something like

All traces

and for the details of a single trace Single trace detail

References

Resource URL
OCPyMemcache on Github https://github.com/opencensus-integrations/ocpymemcache
OCPyMemcache on PyPi https://pypi.org/project/ocpymemcache
Memcached https://memcached.org/
OpenCensus Python on Github https://github.com/census-instrumentation/opencensus-python